Graphene/GaSe-Nanosheet Hybrid: Towards High Gain and Fast Photoresponse

نویسندگان

  • Rongtao Lu
  • Jianwei Liu
  • Hongfu Luo
  • Viktor Chikan
  • Judy Z. Wu
چکیده

While high photoconductive gain has been recently achieved in graphene-based hybrid phototransistors using semiconductor two-dimensional transition/post-transition metal dichalcogenides or quantum dots sensitizers, obtaining fast photoresponse simutaneously remains a challenge that must be addressed for practical applications. In this paper we report a graphene/GaSe nanosheets hybrid photodetector, in which GaSe nanosheets provide a favorable geometric link to graphene conductive layer through van Der Waals force. After a vacuum annealing process, a high gain in exceeding 10(7) has been obtained simitaneously with a dynamic response time of around 10 ms for both light on and off. We attribute the high performance to the elimination of possible deep charge traps, most probably at the graphene/GaSe nanosheets interface. This result demonstrates high photoconductive gain and fast photoresponse can be achieved simultaneously and a clean interface is the key to the high performance of these hybrid devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrating an electrically active colloidal quantum dot photodiode with a graphene phototransistor

The realization of low-cost photodetectors with high sensitivity, high quantum efficiency, high gain and fast photoresponse in the visible and short-wave infrared remains one of the challenges in optoelectronics. Two classes of photodetectors that have been developed are photodiodes and phototransistors, each of them with specific drawbacks. Here we merge both types into a hybrid photodetector ...

متن کامل

Phosphorus‐Graphene Nanosheet Hybrids as Lithium‐Ion Anode with Exceptional High‐Temperature Cycling Stability

A red phosphorus-graphene nanosheet hybrid is reported as an anode material for lithium-ion batteries. Graphene nanosheets form a sea-like, highly electronically conductive matrix, where the island-like phosphorus particles are dispersed. Benefiting from this structure and properties of phosphorus, the hybrid delivers high initial capacity and exhibits promising retention at 60 °C.

متن کامل

UV Photodetector Based on Graphene − ZnO Nanowire Hybrid : 1 Fabrication , Photoresponse and Photoluminescence Studies

Herein, we demonstrate a graphene based efficient UV photodetector by using vertically aligned ZnO 8 NWs on chemical vapor deposited graphene with and without a ZnO buffer layer. The effect of rapid 9 thermal annealing (RTA) on grapheneZnO thin film hybrid prior to the growth of ZnO NWs by physical 10 vapor deposition technique is investigated from the μRaman spectroscopy and high resolution ...

متن کامل

Diagnosis GLY120 Antigen for the Blood ‎and Breast Cancers Using Graphene ‎Nanosheet

   The current study designed and simulated graphene nanosensors for detection of GLY120 tumor-associated carbohydrate antigens. Graphene is a two-dimensional nanosheet that offers a high surface-to-volume ratio and high mobility which increases its sensitivity as a graphene sensor over that of other nanoparticles. The current study simulated graphene sensors with and without GLY12...

متن کامل

Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries.

Room temperature sodium-ion batteries are of great interest for high-energy-density energy storage systems because of low-cost and natural abundance of sodium. Here, we report a novel phosphorus/graphene nanosheet hybrid as a high performance anode for sodium-ion batteries through facile ball milling of red phosphorus and graphene stacks. The graphene stacks are mechanically exfoliated to nanos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016